A c-SAMPLE NON-PARAMETRIC TEST FOR LOCATION IN A MIXED MODEL OF CONTINUOUS AND DISCRETE VARIABLES*

By Shashikala Sukhatme New Delhi

1. Introduction

Let $Z_i = (Y_i, X_{1i}, X_{2i}, \cdots X_{ci})$ $i = 1, 2, \cdots, N$ be N independent observations from a (c+1) variate distribution where for each i, $X_{ji} = 0 \text{ or } 1, \sum_{i=1}^{c} X_{ji} = 1, P\{X_{ji} = 1\} = p_{ji}, P\{X_{ji} = 0\} = q_{ji} = 1 - p_{ji}$ $\sum_{j=1}^{o} p_{j} = 1, \text{ and } P\{Y \leqslant y \mid X_{j} = 1\} = F_{j}(y), \quad j = 1, 2, \dots, c.$ distribution functions F_1, \dots, F_c are assumed to be absolutely continuous. In this paper we propose a median test for testing the hypothesis H_c : $F_1 = \cdots = F_c$. For this purpose, divide the observations Y_1, \dots, Y_N into c sets according as $X_{ji} = 1, j = 1, 2 \dots, c$. Let U_{ji} , \cdots , U_{jnj} $(n_j > 0$ for each j, $\sum_{i=1}^{o} n_j = N)$ denote those Y_j 's for which the corresponding $X_{ji} = 1$. For given n_1, \dots, n_c the problem of testing the hypothesis H_a reduces to testing the hypothesis that the c independent samples of U_{ii} 's $(i = 1, 2, \dots, n_i; j = 1, 2, \dots, c)$ come from the same distribution. However, the problem under consideration differs from the usual c-sample problem in that the sample sizes n_1, \dots, n_c are random variables having a multinomial distribution with parameters $p_1 \cdots, p_s$.

We assume that F_j 's differ only in location. Let $F_j(y) = F(y + \theta_j)$, $j = 1, 2, \dots, c$ for some arbitrary choice of real numbers $\theta_1, \dots, \theta_c$. Further we denote by H_N the hypothesis which specifies that $F_j(y) = F(y + \theta_j/\sqrt{N})$, $j = 1, 2, \dots, c$ and for some pair (i, j) $\theta_i \neq \theta_j$.

Let \tilde{W} denote the sample median of Y observations and m_i the number of U_{i_i} 's $(i = 1, 2, \dots, n_i)$ that are less than \tilde{W} . Assume

^{*} This research was performed while the author was a graduate student at Michigan State University, East Lansing, Michigan, and was sponsored in part by the Office of Ordnance Research,

N=2k+1. Clearly $\sum\limits_{j=1}^{c}m_{j}=k$. The test statistic proposed for testing the hypothesis $H\colon F_{1}=\cdots=F_{c}$ is then defined as

$$M = \sum_{i=1}^{s} \left(\frac{m_i - kp_i}{\sqrt{Np_i}} \right)^s, \tag{1.1}$$

when p_1, \dots, p_c are known, and as

$$\hat{M} = \left(\frac{m_i - k\hat{p}_i}{\sqrt{N\hat{p}_i}}\right) \,, \tag{1.2}$$

where $\hat{p}_j = n_j/N$, when p_1, \dots, p_c are unknown. The test consists in rejecting the hypothesis if $M(\hat{M})$ is large.

In Section 2 we find the joint distribution of m_1, \dots, m_e and \tilde{W} and in Section 3 the limiting distribution of M. In Section 4 the relative asymptotic efficiency of the median test based on M with respect to a corresponding parametric test based on multiple correlation coefficient is evaluated. Section 5 deals with the case when p_1, \dots, p_e are unknown and gives the asymptotic distribution of \hat{M} under the hypothesis H_e , from which we conclude that the test based on \hat{M} is asymptotically distribution-free.

2. Joint Distribution of m_1, \dots, m_c and \tilde{W}

Henceforth f(.) denotes the probability density function of the random variables written in the parentheses.

LEMMA 2.1. The joint distribution of m_1, \dots, m_c and \tilde{W} is given by

$$f(m_{1}, \dots, m_{c}, \tilde{w}) = \frac{N!}{k! \prod_{j=1}^{c} m_{j}!} \prod_{j=1}^{c} [p_{j}F_{j}(\hat{w})]^{m_{j}} \times \left[1 - \sum_{i=1}^{c} p_{j}F_{j}(\tilde{w})\right]^{k} \left[\sum_{j=1}^{c} p_{j}F_{j}'(\tilde{w})\right], \qquad (2.1)$$

where m_1, \dots, m_e is a partition of $k, \sum_{j=1}^e m_j = k$.

Proof.—Noting that the conditional probability density of m_1, \dots, m_e and \tilde{W} for fixed values of n_1, \dots, n_e is given by

$$f(m_{1}, \dots, m_{c}, \widetilde{w} | n_{1}, \dots, n_{e})$$

$$= \left[\sum_{j=1}^{c} \frac{(n_{j} - m_{j})}{[1 - F_{j}(\widetilde{w})]} F_{j}'(\widetilde{w}) \right]$$

$$\times \left[\prod_{j=1}^{d} \binom{n_{j}}{m_{j}} (F_{i}(\widetilde{w}))^{m_{j}} ((1 - F_{j}(\widetilde{w}))^{n_{j} - m_{j}} \right]$$
(2.2)

and that n_1, \dots, n_c have the multinomial distribution $m(N; p_1, \dots, p_c)$ given by

$$f(n_1, \dots, n_c) = \frac{N!}{\prod_{\substack{j=1\\j=1}}^{o} n_j!} \prod_{j=1}^{o} p_j^{n_j}, \qquad (2.3)$$

we obtain by using

$$f(m_1, \dots, m_c, \tilde{w})$$

$$= \sum_{n_1, \dots, n_c} f(m_1, \dots, m_c, \tilde{w} | n_1, \dots, n_c) f(n_1, \dots, n_c)$$

the required joint probability density given by (2.1).

Summing (2.1) over m_1, \dots, m_s we obtain the marginal distribution of \tilde{W} ,

$$f(\tilde{w}) = \frac{N!}{k! \, k!} \left[\sum_{j=1}^{c} p_{j} F_{j}(\tilde{w}) \right]^{k} \left[1 - \sum_{j=1}^{c} p_{j} F_{j}(\tilde{w}) \right]^{k} \times \left[\sum_{j=1}^{c} p_{j} F_{j}'(\tilde{w}) \right].$$

Under H_c : $F_1 = F_2 = \cdots = F_c$, integration over the domain $0 \le F_j(\tilde{w}) \le 1$ in (2 1) yields the distribution of m_1, \dots, m_c as

$$f(m_1, \dots, m_e) = \frac{k!}{\prod_{i=1}^e m_i!} \prod_{j=1}^e p_j^{m_j}$$

which is multinomial distribution $m(k; p_1, \dots, p_c)$.

Also note that (m_1, \dots, m_c) and \tilde{W} are independent under the hypothesis H_c .

3. Asymptotic Distribution of M

We first prove the following lemma which gives the joint limiting distribution of m_1, \dots, m_e and \tilde{W} .

LEMMA 3.1. Let

$$v_j = \frac{m_j - Np_j F_j(\xi)}{\sqrt{Np_j} F_j(\xi)}, \quad j = 1, 2 \cdots, c; \quad \eta = \sqrt{N}(\widetilde{w} - \xi),$$

where ξ is such that

$$\sum_{j=1}^{g} p_{j} F_{j}(\xi) = \frac{1}{2}.$$
 (3.1)

Assume that in some neighbourhood of ξ the density function F'(y) = f(y) $(j = 1, 2, \dots, c)$ has a continuous derivative. Then the asymptotic joint distribution of v_1, \dots, v_{c-1} and η is c-variate normal distribution with zero mean vector and covariance matrix Σ given by $\Sigma^{-1} = \bigwedge = (\lambda ij)$ where

$$\lambda_{ii} = 1 + \frac{p_{i}F_{i}(\xi)}{p_{o}F_{o}(\xi)}, \quad i = 1, 2, \dots, (c-1);$$

$$\lambda_{co} = \sum_{i=1}^{c} \frac{p_{i}f_{i}^{2}(\xi)}{F_{i}(\xi)} + 2 \left[\sum_{i=1}^{c} p_{i}f_{i}(\xi) \right]^{2};$$

$$\lambda_{ij} = \frac{[p_{i}p_{i}F_{i}(\xi)F_{j}(\xi)]^{\frac{1}{2}}}{p_{o}F_{o}(\xi)}, \quad i \neq j = 1, 2, \dots, (c-1).$$

$$\lambda_{ic} = f_{i}(\xi) \sqrt{\frac{p_{i}}{F_{i}(\xi)}} - \frac{f_{o}(\xi)}{F_{o}(\xi)} \sqrt{p_{i}F_{i}(\xi)}, \quad i = 1, 2, \dots, (c-1).$$

Proof.—Throughout this proof for convenience set $F_i = F_i$ (ξ) and $f_i = f_i(\xi)$. Using Taylor's expansion

$$F_{j}\left(\widetilde{w}
ight) = F_{j}\left(\xi + rac{\eta}{\sqrt{N}}
ight) = F_{j} + rac{\eta}{\sqrt{N}} f_{j} + o\left(rac{\eta^{2}}{N}
ight),$$
 $j = 1, 2, \cdots, c;$ $1 - \sum_{i=1}^{n} p_{i}F_{j}\left(\widetilde{w}
ight) = rac{1}{2} - rac{\eta}{\sqrt{N}} \sum_{i=1}^{n} p_{j}f_{j} + o\left(rac{\eta^{2}}{N}
ight).$

and substituting these in (2.1) we get

$$(m_{1}, \dots, m_{o}, \tilde{w})$$

$$= \left\{ \frac{N(2k)!}{k! \ k! \ 2^{2k}} \right\} \left\{ \frac{k!}{\prod_{i=1}^{c} m_{i}!} \prod_{j=1}^{c} (2p_{j}F_{j})^{m_{j}} \right\}$$

$$\times \left\{ \left(\prod_{i=1}^{c} \left[1 + \frac{\eta}{\sqrt{N}} \frac{f_{i}}{F_{i}} + o\left(\frac{\eta^{2}}{N}\right) \right]^{m_{i}} \right) \right\}$$

$$\times \left(1 - \frac{-2\eta}{\sqrt{N}} \sum_{i=1}^{c} p_{i}f_{i} - o\left(\frac{\eta^{2}}{N}\right) \right)^{k} \right\}$$

$$\times \left\{ \sum_{j=1}^{c} p_{j}f_{j} \left(\xi + \frac{\eta}{\sqrt{N}} \right) \right\}$$

$$= \left\{ A_{1} \right\} \left\{ A_{2} \right\} \left\{ A_{3} \right\} \left\{ A_{4} \right\}.$$
(3.2)

Note that ν_i 's satisfy the relation

$$\sum_{j=1}^{c} v_j (p_j F_j)^{\frac{1}{2}} = 0$$
 (3.3)

Now consider the region S defined by

$$S = \{(\nu_1, \cdots, \nu_{c-1}, \eta) : a_1 \leqslant \nu_1 \leqslant b_1, a_2 \leqslant \nu_2 \leqslant b_2, \cdots, a_c \leqslant \eta \leqslant b_c\}.$$

Using Stirling's approximation for n!

$$A_1 \sim \frac{N}{\sqrt{k\pi}}$$
.

 A_2 is independent of η and because of convergence of multinomial distribution to normal distribution, uniformly in S

$$\begin{split} A_2 &\sim [(2\pi)^{(c-1)} \ (2p_c F_c) \prod_{j=1}^{c} (2kp_j F_j)]^{-\frac{1}{2}} \\ &\times \exp \left[-\frac{1}{2} \left[\sum_{i=1}^{c-1} \nu_i^2 \left(1 + \frac{p_i F_i}{p_c F_c} \right) + \sum_{i \neq i=1}^{c-1} \nu_i \ \nu_i \ \frac{\sqrt{p_i p_j F_i F_j}}{p_c F_c} \right] \end{split}$$

Using series expansion for $\log(1+x)$, uniformly in S

A c-SAMPLE NON-PARAMETRIC TEST FOR LOCATION IN A MIXED MODEL 207

$$\log A_{3} = -\frac{\eta^{2}}{2} \left[\sum_{i=1}^{c} \frac{p_{i} f_{i}^{2}}{F_{i}} + 2 \left(\sum_{i=1}^{c} p_{i} f_{i} \right)^{2} \right] + \sum_{i=1}^{c} \eta v_{i} f_{i} \left(\frac{p_{i}}{F_{i}} \right)^{\frac{1}{2}} + o (1).$$

Using continuity of f_i , we have, uniformly in S,

$$f(m_{2}, \dots, m_{c}, \widehat{w})$$

$$\sim N\left(\sum_{j=1}^{c} p_{j} F_{j}\right) \left[k\pi (2\pi)^{(c-1)} (2p_{c}F_{c}) \prod_{j=1}^{c} (2kp_{j}F_{j})\right]^{-\frac{1}{2}}$$

$$\times \exp \left[-\frac{1}{2} \left[\sum_{i=1}^{c-1} \nu_{i}^{2} \left(1 + \frac{p_{i} F_{i}}{p_{c}F_{c}}\right)\right]$$

$$+ \eta^{2} \left\{\sum_{i=1}^{c-1} \frac{p_{i} f_{i}^{2}}{F_{i}} + 2 \left(\sum_{i=1}^{c} p_{i} f_{i}\right)^{2}\right\}$$

$$+ \sum_{i \neq j=1}^{c-1} \nu_{i} \nu_{j} \frac{\sqrt{p_{i}p_{j}F_{i}F_{j}}}{p_{c}F_{c}}$$

$$- 2\eta \sum_{i=1}^{c-1} \nu_{i} \left\{f_{i} \left(\frac{p_{i}}{F_{i}}\right)^{\frac{1}{2}} - \frac{f_{c}}{F_{c}} (p_{i}F_{i})^{\frac{1}{2}}\right\}.$$

Now making the transformation $(m_1, \dots, m_c, \tilde{W}) \to (\nu_1, \dots, \nu_c, \eta)$ it is seen that

$$\lim_{N\to\infty} P\left\{a_1 \leqslant \nu_1 \leqslant b_1, \cdots, a_c \leqslant \eta \leqslant b_c\right\}$$

$$= \int_{a_1}^{b_1} \int_{a_2}^{b_2} \cdots \int_{a_c}^{b_c} f(\nu_1, \cdots, \nu_{c-1}, \eta) d\nu_1 d\nu_2 \cdots d\eta$$

where $f(\nu_1, \dots, \nu_{c-1}, \eta)$ is the probability density function of normal distribution described in the present theorem.

The following lemma gives the asymptotic joint distribution of ν_1, \dots, ν_{c-1} and η under the hypothesis H_N which specifies that $F_n(y) = F(y + \theta_j/\sqrt{N}), j = 1, 2, \dots, c$.

LEMMA 3.2. Under the hypothesis H_N the asymptotic joint distribution of $(\iota_1 \cdots, \iota_{c-1}, \eta)$ is the c-variate normal distribution given by

$$f(v_1, \dots, v_{c-1}, \eta) = \frac{f(\xi)}{\pi^{r/2} 2^{(c-2)/2} p_c^{-1/2}} \times \exp \left[-\frac{1}{2} \left[4\eta^2 f^2(\xi) + \sum_{i=1}^{c-1} v_i^2 \left(1 + \frac{p_i}{p_c} \right) + \sum_{i\neq i=1}^{c-1} v_i v_j \frac{\sqrt{p_i p_i}}{p_c} \right].$$

Proof.—It is similar to that of Lemma 3.1.

Now we are in a position to obtain the limiting distribution of M defined by (1 1) under the hypothesis H_N .

THEOREM 3.1. Under the hypothesis H_N the asymptotic distribution of 2M is non-central χ^2 with (c-1) degrees of freedom and non-centrality parameter

$$\lambda = 2 [F'(\xi)]^2 \sum_{j=1}^{c} p_j (\theta_j - \bar{\theta})^2,$$
 (3.4)

where

$$\bar{\theta} = \sum_{j=1}^{c} p_{i}\theta_{j}.$$

Proof.-Write

$$\begin{split} u_i &= \frac{m_i - kp_i}{\sqrt{Np_i}} = \frac{\left[m_i - Np_i F_i(\xi)\right] \sqrt{F_i(\xi)}}{\sqrt{Np_i F_i(\xi)}} \\ &- \frac{kp_{i^*} - Np_i F_i(\xi)}{\sqrt{Np_i}} \,, \end{split}$$

 $i=1, 2, \cdots, c.$

Under the hypothesis H_N using Lemma 3.2 it follows that the asymptotic joint distribution of (u_1, \dots, u_c) is c-variate normal with means $\mu_i = \theta_i F'(\xi) \sqrt{p_i}$, and covariance matrix $\Sigma = (\sigma_{ij})$ of rank (c-1) where $\sigma_{ii} = (1-p_i)/2$, $i=1, 2, \dots, c$, $\sigma_{ij} = -\sqrt{p_i p_j}/2$, $i \neq j=1, 2, \dots, c$.

Hence noting that $\sum_{j=1}^{c} \sqrt{p_j} u_j = 0$ it follows that the limiting distribution

of

$$2M = 2\left[\sum_{i=1}^{c-1} u_i^2 \left(1 + \frac{p_i}{p_c}\right) + \sum_{i \neq j=1}^{c} u_i u_j \frac{\sqrt{p_i p_j}}{p_c}\right]$$

is $\chi^2_{c-1}(\lambda)$, where λ is given by (3.4).

4. ASYMPTOTIC EFFICIENCY

Let $F_j(y) = F(y + \theta_j)$, then H_c is true when $\theta_j = 0$. We now find the relative asymptotic efficiency of the c-sample median test with respect to the corresponding parametric test, when $F_j(j = 1, 2, \dots, c)$ is a normal distribution with mean μ_j and variance σ^2 . The hypothesis H_c is true if and only if $\rho^2_{Y(X_1, \dots, X_c)} = 0$, (Olkin and Tate¹) where $\rho_{Y(X_1, \dots, X_c)}$ is the multiple correlation coefficient between Y and X. Let R denote the sample multiple correlation coefficient between Y and X. If

$$\bar{U}_{\cdot \cdot \cdot} = \frac{\left(\sum\limits_{i,j} U_{ij}\right)}{N}, \quad \bar{U}_{i \cdot} = \frac{\left(\sum\limits_{i=1}^{n_j} U_{ji}\right)}{n_j},$$

then

$$T^{2} = \frac{R^{2}}{1 - R^{2}} = \frac{\sum_{j=1}^{c} n_{j} (\bar{U}_{j.} - \bar{U}..)^{2}}{\sum_{j,j} (U_{ji} - \bar{U}..)^{2} - \sum_{j=1}^{c} (\bar{U}_{j.} - \bar{U}..)^{2}}.$$

Also

$$\rho^{2}_{Y(X_{3},...,X_{c})} = -\sum_{j=1}^{c} \frac{\left[(\mu_{j} - \tilde{\mu})^{2} p_{j}\right]}{\sigma^{2}},$$

$$1 + \sum_{j=1}^{c} \frac{\left[(\mu_{j} - \tilde{\mu})^{2} p_{j}\right]}{\sigma^{2}},$$

where

$$\bar{\mu} = \sum_{i=1}^{\bullet} p_i \mu_i.$$

Following Fisher² it is seen that under the hypothesis H_N the asymptotic distribution of (N-c) $T^2/(c-1)$ is $\chi^2_{(a-1)}(\lambda')$ where the non-centrality parameter is given by

$$\lambda' = \sum_{j=1}^{c} \frac{p_j (\mu_j - \bar{\mu})^2}{\sigma^2}.$$

Also it is proved that the limiting distribution of 2M is $\chi^2_{c-1}(\lambda)$, where λ is given by

$$\lambda = 2 [F'(\xi)]^2 \sum_{i=1}^{c} \frac{p_{i} (\mu_{i} - \bar{\mu})^2}{\sigma^2}.$$

Since the two test statistics are asymptotically distributed as a noncentral χ^2 with the same number of degrees of freedom, following Andrews³ and Hannan⁴ it is seen that the asymptotic efficiency is given by the ratio of the two non-centrality parameters. Hence the asymptotic relative efficiency is found to be

$$e(M, R) = 2\sigma^2 [F'(\xi)]^2 = \frac{1}{\pi}.$$

5. Case when p_1, \dots, p_c are Unknown

In this case we estimate p_j by $\hat{p}_j = n_j/N$, $j = 1, 2, \dots, c$ and consider the test based on \hat{M} defined by (1.2). It is interesting to note that the test of H_c based on \hat{M} is asymptotically distribution-free, which is seen from Theorem 5.1.

THEOREM 5.1. Under the hypothesis H_c , $4\hat{M}$ is asymptotically distributed as a χ^2 variable with (c-1) degrees of freedom.

Proof .-- Write

$$v_j = \frac{m_j - k\hat{p}_j}{\sqrt{N\hat{p}_j}} = \left(\frac{p_j}{\hat{p}_j}\right)^{\frac{1}{3}} \frac{(m_j - k\hat{p}_j)}{\sqrt{N\hat{p}_j}} = \left(\frac{p_j}{\hat{p}_j}\right)^{\frac{1}{3}} w_j,$$

where

$$w_{i} = \frac{m_{j} - kp_{i}}{\sqrt{Np_{j}}} - \frac{k\left(\hat{p}_{j} - p_{j}\right)}{\sqrt{Np_{j}}}.$$

Let $v = (v_1, \dots, v_c)$ and $w = (w_1, \dots, w_c)$, then v = wD, where D is a diagonal matrix with $\sqrt{p_j}/\sqrt{\hat{p}_j}$ as its diagonal elements. Since $\lim_{N\to\infty} \hat{p}_j = p$, it follows that $\lim_{N\to\infty} (\sqrt{p_j}/\sqrt{\hat{p}_j}) = 1$ and hence the matrix

D converges in probability (element-wise) to identity matrix. An application of lemma of [5, Lemma 1] yields that the vectors v and w have the same limiting distribution. Also it can be proved that the asymptotic distribution of w is c-variate normal with zero mean vector and covariance matrix $\mathcal{E} = (o_{ij})$ of rank (c-1) with $o_{jj} = (1-p_j)/4$, $j=1,\ 2,\ \cdots,\ c$ and $\sigma_{ij} = -\sqrt{p_ip_j}/4,\ i\neq j,\ 1,\ 2,\ \cdots,\ c$. Noting that $\sum_{j=1}^{c} \sqrt{p_j} \, v_j$ converges in probability to zero as $N\to\infty$, the asymptotic distribution of $v_1,\ \cdots,\ v_{c-1}$ is given by

$$f(v_1, \dots, v_{c-1}) = \frac{1}{(2\pi)^{(c-1)/2} \frac{1}{(\frac{1}{4})^{(c-1)/2} p_c^{1/2}}} \times \exp \left[-2 \left[\sum_{i=1}^{c-1} v_i^2 \left(1 + \frac{p_i}{p_c} \right) + \sum_{i \neq j=1}^{c-1} v_i v_j \frac{\sqrt{p_i p_j}}{p_c} \right].$$

Hence

$$4\hat{M} = 4\left[\sum_{i=1}^{e-1} v_i^2 \left(1 + \frac{\hat{p}_i}{\hat{p}_e}\right) + \sum_{i \neq j-1}^{e-1} v_i v_j \frac{\sqrt{\hat{p}} \, \hat{p}_j}{\hat{p}_e}\right]$$

has the asymptotic distribution stated in the theorem.

6. ACKNOWLEDGEMENT

It is a pleasure to record my sincere thanks to Professor Ingram Olkin for suggesting the problem and for his keen interest in its solution.

7. REFÉRENCES

- Olkin, I. and Tate, R. F. .. "Multivariate correlation models with mixed discrete and continuous variables," Ann. of Math. Stat., 1961, 27, 446-465.
- 2. Fisher, R. A. "The general sampling distribution of the multiple correlation coefficient," *Proc. Roy. Soc. Lond.*, 1928, 7 A (121), 654-73.
- Fred C. Andrews . "Asymptotic behaviour of some rank tests for analysis of variance," Ann. of Math. Stat., 1954, 25, 724-36.
- Hannan, E. J. "The asymptotic power of certain tests based on multiple correlation coefficient," *Journal Royal* Stat. Soc., London, 1956, 18 B, 227-33.
- Chin Long Chiang .. "On regular best asymptotically normal estimates," Ann. of Math. Stat., 1956, 27, 336-51.