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1. Introduction

Let Zi = (Yi, Xu, X^i, • • • Xcd / = 1, 2, • ••, be N independent
observations from a (c + 1) variate distribution where for each i,

X,i = 0or 1, i JSr,i = 1, P{X,, = 1} = p„ P{Z,, = 0} = ?, = 1- Pi,
i=i

2Pi = l, and P{F<j|Z, = 1} = F,(:^), J=l, 2, •••,€. The
j=l

distribution functions F^, are assumed to be absolutely con
tinuous. In this paper we propose a median test for testing the
hypothesis H,-.F^= • = F,. For this purpose, divide the observa
tions Yi, • • •, Yff into c sets according as Xji = I, J = ], 2 •••, c.

0

Let Uji, •• •, Uj„j (Uj > 0 for each J, S = N) denote those Y/s for
i=i

which the corresponding = 1. For given the problem
of testing the hypothesis reduces to testing the hypothesis that the
c independent samples of (/ = 1, 2, • • •., ; y = 1, 2, • • •, c) come
from the same distribution. However, the problem under considera
tion differs from the usual c-sample problem in that the sample sizes
«], •••,«( are random variables having a multinomial distribution
with, parameters Pi • • -yPo-

We assume that F/s differ only in location. Let F^yy) =F{y + 6^,
j = I, 2, • • •, c for some arbitrary choice of real numbers 6-^, •
Further we denote by Hi^ the hypothesis which specifies that Fj(j)
= F(y+ Ojly/N), 7=1, 2, ••c and for some pair {i, J)

Let W denote the sample median of Y observations and nij the

number of Uj '̂s 0'=1, 2,---,nj) that are less than W. Assume
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the Office of Ordnance Research,
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N = 2kClearly E nij = k. The test statistic proposed for
)=i

testing the hypothesis H\Fi= •• • = is then defined as

i=i

when Pi,---,Pc are known, and as

M =
mi — kpi \
vm J'

where p. = njjN, when p^,---,pc are unknown. The test consists

in rejecting the hypothesis if M (M) is large.

in Section 2 we find the joint distribution of mi, • • and W
and in Section 3 the limiting distribution of M. In Section 4 the
relative asymptotic efficiency of the median test based on M with
respect to a corresponding parame+ric test based on multiple correla
tion coefficient is evaluated. Section 5 deals with the case when

Pi, •••,Pc are unknown and gives the asymptotic distribution of M
under the hypothesis from, which we conclude that the test based

on M is asymptotically distribution-free.

2. Joint Distribution of mi, • • •, m,, and W

Henceforth /(.) denotes the probability density function of the
random variables written in the parentheses.

(1.1)

(1.2)

by
Lemma 2.1. The joint distribution of m,, • • m^ and W is given

AfrtJi, • • •,inc,w)

Nl m;n [pF, (mO]

J=1

X 1- F PiF) (w)
;=1

2
L

e

where is a partition of k, S nij = k.
j=i

(2.1)
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Pz-oo/.—Noting that the conditional probability density of

mi, and W for jSxed values of Kj, •• •, n, is given by

f(mx, • • •, rtio, w\ «j, •

~ 0

V («y -m) p ,
L\r^Tm

Ly=i

^ ^ (^0 (2-2)L i=i J

and that «i, have the multinomial distribution m{N) pi, • • •,
given by

f{n„---,n,) = ^ npr , (2.3)
77

/=>i

we obtain by using

= i7 IVI Hi,
«1, • • «c

the required joint probability density given by (2.1).

Summing (2.1) over we obtain the marginal distri-
I <*»

bution of W,

f(w) =
N\

k\k\

X

c n n ®

_ i-i

c

/-l

_ y-i

Under = F2 = • • • ^ F^, integration over the domain
0<F,(h')< 1 in (2 1) yields the distribution of mj, as

/(mi, • • •, /7J„) = 77 Pi'"'
. 1 j-tn m^l

/=i

which is multinomial distribution m(k; p^, •••,Pc).

Also note that (mi, and W are independent under the hypo
thesis He-
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3. Asymptotic Distribution of M

We first prove the following lemma which gives the joint limit

ing distribution of m^, • • •,mc and W.

Lemma 3.1. Let

where f is such, that

yea I
(3.1)

Assume that in some neighbourhood of ^ the density function

•f.'(j) =/(y) (y = 1; 2, •• •,£) has a continuous derivative. Then
the asymptotic joint distribution of Vj, • • •, Vj-i and is c-variate normal
distribution with zero mean vector and covariance matrix S given by
27"^ = A = i^ij) where

A, =1+^42 > /= 1, 2, •••, (c-1);
PoFci^)

L''fTQ)

(/

Zj
L i=i

w /_] 2 ... r. n-

PcFAi) '

A.. /=l,2.---,(.-l).

Proof.—Throughout this proof for convenience set Fi = F,- (^)
and, ,/' = -/• (I). Using Taylor's expansion

j =\, 2, •••,€;

.1- ^ P,-P;;W =̂ - (ir) •
and substituting these in (2.1) we get
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/(ffii, w)

_{N{2k)\]\ kl
/ nm,\

X n
\i"i vVPi+ ''&)] )

X t:
N.

\ i=i

X

= {A^) [A,] {^3} {A,}.

Note that v.'s satisfy the relation

i V, feF,)i = 0

Now consider the region S defined by

S = {(>'], • • •, v„_i, 7)): vi< bx, V2< Z'z, : • •,

h).

Using Stirling's approximation for n\

A,
N

(3.2)

(3-3)

-S/k-TT

A2 is independent of t] and because of convergence of multinomial
distribution to normal distribution, uniformly in S

A, ~ [(27r)<-i) (2p,F^) n {2kp,F;)]-l
J=1

X ex-». —

L i=l i7^j= l

Using series expansion for log(l + x\ uniformly in S
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l0g/l3 = -^
L. 1-1

+2I YjP,f,

Using continuity of we have, uniformly in S,

f{m^, • • •, w^vv)

/

\

1
X exp. —2

k^d-rry-^^ i2p,F,) mikp^Fj
i-l

c— 1

''I'

' '{Ef•
+

M/-1

-

VPiPiFjFj •
PcFc

•pAi L

Now making the transformation (wj, •• w„, PF) ^ (vj, •• •, i^)
it is se^en that

lim P {ai< vi< bx, •••, a,K •)?< b,]
N-^oo

61 60 ^ hf.
= J J • • • J /(v.i, • *•, ,7?) dvj^dv^ d-q

dl Co Qc

where /{v^, •• •, 7]) is tlae probability density function of normal
distribution described in the present theorem.

The following lemma gives the asymptotic joint distribution of
"1, •••J ^c-i and rj under the hypothesis which specifies that F, (y)
=^F(j+ejVN), j= l, 2, •••,€.

3
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Lemma 3 2. Under the hypothesis the asymptotic joint
distribution of , rj) is the c-yariate normal distribution
given by

f(Vl, • • Tj)

m Xexo - ^„'l2 2ic-~2)^2pl/2 ^ 2

«=i <#(=1

Proof.—It is similar to that of Lemma 3.1.

Now we are in a position to obtain the limiting distribution of
M defined by (1 1) under the hypothesis Hj^.

Theorem 3.1. Under the hypothesis H[^ the asymptotic distribu
tion of 2M is non-central ^ with (c — 1) degrees of freedom and
non-centrality parameter

>^ = 2[F'{0f E p^ie,-e)\ (3.4)
; = i

where

6=2 P,Sr
1-1

Proof.—Write

VNp, VNp]F,(0
mi - kpi ^ [m, - Np, F,{mVF, U)

kpe— NpiFi {0

VWi

i= I, 2,

Under the hypothesis using Lemma 3.2 it follows that the asymptotic
joint distribution of (%, is c-variate normal with means

fj'i = SiF'(0 VPi, and covariance matrix Z" = (cr,-^) of rank (c —1)
where = (1 - p,)12, / = 1, 2, •••, c, cr,, = - Vpipjl2, i^J = I,
2,--sc.
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c _

Hence noting that s/pj Uj = 0 it follows that the limiting distribution

of

2M = 2

c-1

E"'
c

r
^ p.

I_ i=l i#;=l

is where A is given by (3.4).

4. Asymptotic Efficiency

Let Fj{y) = F{y+ 0;), then i/„ is true when 9^ = 0. We now
find the relative asymptotic efficiency of the c-sample median test
with respect to the corresponding parametric test,' when F^(J= 1, 2,

is a normal distribution with mean and variance The
hypothesis H, is true if and only if pV (x„...,x„) = P, (Olkinand Tatei)
where py {x,,. .,Xc) is multiple correlation coefficient between
Y and X. Let R denote the sample multiple correlation coefficient
between Y and X. If

then

Also

U. . =

(zu,.
N , n,

=

1 -

2nj{V,_ - 0..f
3-1

uiu,, ^ - U..Y

[(i^i - fiypj]

J = i
P V(Xn...:Zc) -

1 +
Z_J
J-i

where

.//X. ==, S Pi^i- - .
. /•=!
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Following Fisher'' it is seen that under the hypothesis Hi^ the asymptotic
distribution of {N — c) T^l{c — 1) is (o-i)(A') where the non-centrality
parameter is given by

/ = l

Also it is proved that the limiting distribution of2M is xViC^)> where
A is given by

A= 2[F(|)f
J = 1

Since the two test statistics are asymptotically distributed as a non-
central with the same number of degrees of freedom, following
Andrews® and Hannan" it is seen that the asymptotic efficiency is given
by theratio of the two non-centrality parameters. Hence theasymptotic
relative efficiency is found to be

eiM,R) =2o^{F'{0? =\.

5. Case when p^, are Unknown

In this case we estimate pj by Pj = n,IN, J=h 2, •• •, c and'

consider the test based on M defined by (1.2). It is interesting to

note that the test of based on M is asymptotically distribution-free,
which is seen from Theorem 5.1.

Theorem 5.1. Under the hypothesis 4M is asymptotically
distributed as a variable with (c — 1) degrees of freedom.

Proof.—Write

mi - kp, _ (PiY {m- - kpi) ^

where

^ nji -kp,_k ipi -_pj)
^ ~^/'Np• VNPi

Let V= (ui, •••, Uc) and w= (w^, •••, iv,), then v = wD, where D is
a diagonal matrix with VpJVPj as it^ diagonal elements. Since

,plimp; it follows that plim (VpJVP) = 1and hence the matrix
JV^oo
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Dconverges in probability (element-wise) to identity matrix. An appli
cation of lemma of [5, Lemma 1] yields that the vectors v and w have
the same limiting distribution. Also it ,can be proved that the asymp
totic distribution of w is c-variate norrnal with zero mean vector and
covariance matrix S = (ojj) of rank (c —1) with oyy = (1 —
7=1, 2, •••, c and o-i,. = - VpTpJ^, 1' 2, •••, c. Noting that

^/pj Vj converges in probability to.zero as N—> oo, the asymptotic
j=i

distribution of is given by

/(Ui,

1

X exp.

My-i

Hence

4M= 4

has the asymptotic distribution stated in the theorem.
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